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1. Introduction

The contemporary description of the high energy evolution of QCD scattering amplitudes,

given by the B-JIMWLK equations, has been developed over the last decade [1 – 20] building

upon the pioneering ideas on gluon saturation set out by Gribov, Levin and Ryskin [21] in

the early 80s. Notwithstanding that the B-JIMWLK set of equations has proved difficult

to tackle and that its complete solution remains unknown, a series of numerical [22 –

30] and analytical [31 – 36] studies have established the asymptotic properties of the B-

JIMWLK equations by considering their mean field limit, where the B-JIMWLK set reduces

to a single closed equation — the Balitsky-Kovchegov (BK) equation [16 – 18, 37, 38].

Further, the results from this mean field equation deviate at most 10% from those obtained

numerically from the full B-JIMWLK [30].

Significantly, the B-JIMWLK scheme neglects important effects [39 – 42] — variably

referred to as “Pomeron loops” [42 – 49], “fluctuations” [41] or “wave function saturation

effects” — due to gluon fluctuations. The insufficiencies of the B-JIMWLK framework

become apparent once one recalls that these equations were derived under the explicit

assumption — and, therefore, are strictly valid for such a physical situation — of large

target gluon density and of a dilute projectile. Therefore, the B-JIMWLK formalism fails

to properly describe the high-energy evolution for less asymmetrical systems (i.e. those

where both target and projectile are dense). These crucial observations have led to a spurt

of activity in this domain targeted at obtaining an evolution scheme correctly accounting for

gluon fluctuation effects [40, 42 – 58]. A duality transformation linking the low and high
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density regimes [47, 48] places strict constraints on the form of any would-be complete

evolution kernel.

Different paths have been followed in attempting to write an evolution kernel including

dynamics beyond B-JIMWLK. A potentially fruitful path explores the connection between

high energy QCD evolution and a reaction-diffusion process [41] to suggest that the full

dynamics should be described by an equation belonging to the universality class of the

stochastic Fisher-Kolmogorov-Petrovsky-Piscunov (sFKPP) equation [42, 51 – 53, 45, 59].

A different strategy, the light-cone wave function approach [60, 47 – 50], yields an evolution

kernel not subject to the restrictions underlying the B-JIMWLK equations. This kernel,

written in terms of the classical gluon fields of the projectile, reduces to the JIMWLK

kernel when the fields are taken at leading order in the charge density. In this work we go

one step further by computing the leading projectile density corrections.

This paper is organized as follows: in section 2 we briefly introduce the light-cone wave

function approach to high energy QCD. In section 3 we present our general results for the

leading projectile density correction, and in section 4 we thoroughly discuss the dipole limit

of the results of the previous section. Our conclusions are presented in section 5.

2. Setup

We begin by reviewing the main features of the light-cone wave function approach to the

high energy limit of QCD as derived by Kovner, Lublinsky and Wiedemann in [50, 60].

Consider the collision between a bunch of energetic gluons moving in the light-cone ‘+’

direction — the projectile — with a dense hadronic target characterized by large gluon

fields. Let Y be the total rapidity of the collision. The light-cone wave function of the

incoming projectile is given by

|Ψinit(Y )〉 = Ψ[aa†
i (k+, k)]|0〉, (2.1)

where aa†
i (k+, k) are the creation operators for gluons with color index a, longitudinal

momentum above some hard cutoff, k+ >Λ+, and transverse momentum k. Assuming

that each of the gluons in the projectile interacts independently with the target, the wave

function after the interaction is given by

|Ψf (Y )〉 = Ψ[Sab(xi)a
b†
i ]|0〉, (2.2)

where Sab(xi) is the S-matrix corresponding to the propagation through the target of a

single gluon located at transverse position xi. At very high energies the interaction with

the target eikonalizes and the S-matrix is diagonal in the transverse coordinates of the

incoming gluons. Moreover, the S-matrix elements depend only on the gluon fields in

the target, Aµ
t , which allows us to take them, rather than the target fields themselves,

as the physical degrees of freedom to describe the target. Although Sab is a quantum

operator acting on the Hilbert space of the target fields, the commutators of S-operators

are suppressed by powers of the target density, which hereinafter is assumed to be very

large. Therefore Sab can, and will, be considered as a classical c-number, in the spirit
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of the semiclassical approach to dense gluonic systems [1 – 3]. With all this in mind, the

scattering matrix of the projectile at rapidity Y can be written as

ΣY [S] = 〈Ψi(Y )|Ψf (Y )〉. (2.3)

High energy processes are characterized by a large separation of time scales — i.e. the time

needed for the fast projectile to propagate through the target (the interaction time) is much

shorter than the typical time scale under which the large, soft target fields vary. Thus, the

fast projectile probes the target fields in a fixed, frozen configuration. Consequently, the

physical scattering matrix is obtained by averaging over all the possible configurations of

the gluon fields in the target:

〈Σ〉 =

∫

dS Σ[S]WY [S], (2.4)

where the weight functional WY [S] can be understood as the probability density for the

target to have a certain configuration of the fields, S, at rapidity Y (see [49] for a de-

tailed discussion of the physical meaning and properties of WY [S]). In the wave function

approach, the energy evolution of the system described above is achieved by boosting the

projectile to higher rapidities, leaving the target unevolved. In this way all the information

about the energy evolution of the system is encoded in the behavior of the projectile wave

function as opposed to the strategy followed in the original derivation of the JIMWLK

equation, in which the quantum fluctuations originated from boosting the target to higher

energies were resummed in the presence of strong background fields, leading to the renor-

malization of the weight functional, WY .

To first order in δY the projectile wave function at rapidity Y + δY is given by:

|Ψi(Y + δY )〉 =

{

1 − 1

2
δY

∫

d2z ba
i (z, [ρ])ba

i (z, [ρ])

+ i

∫

d2z ba
i (z, [ρ])

∫ Λ

(1−δY )Λ

dk+

√
π|k+|1/2

a
†a
i (k+, z)

}

|Ψi(Y )〉, (2.5)

where bi are the Weizsäcker-Williams (WW) fields of the projectile, which depend uniquely

on the projectile density operator ρ, defined as:

ρa =

∫

Λ+

dk+a†bi (k+, z)T a
bc ac

i(k
+, z), (2.6)

where T a are the generators of SU(N) in the adjoint representation. For a dilute projectile

like the one considered here, the number of gluons in its wave function is small ρ ∼ O(1).

The physical meaning of eq. (2.5) is clear: The hard, ‘valence’ gluons in the initial wave

function are dressed with a cloud of soft gluons, the Weizsäcker-Williams (WW) fields bi.

These fields are determined from the classical Yang-Mills equations of motion (EOM), in

which the hard gluons enter as an external source. The separation between soft and hard

modes is made at an arbitrary scale Λ+. The boost of the projectile opens up the phase

space for the production of new hard gluons out of the soft WW fields. This production
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process is accounted for by the last term in the rhs of eq. (2.5). The first term corresponds

to no gluon production, whereas the second term corresponds to virtual corrections required

to ensure the right normalization of the wave function.

The wave function of the projectile after the collision with the target is given by an

analogous expression:

|Ψf (Y + δY )〉 =

{

1 − 1

2
δY

∫

d2z ba
i (z, [Sρ])ba

i (z, [Sρ]) (2.7)

+ i

∫

d2z ba
i (z, [Sρ])

∫ Λ

(1−δY )Λ

dk+

√
π|k+|1/2

Sab(z)a
†b
i (k+, z)

}

|Ψf (Y )〉,

where now the WW fields, bi, are given by the solution of the classical EOM for rotated

sources Sabρb. The scattering matrix of the evolved system is:

Σ[S](Y + δY ) = 〈Ψi(Y + δY )|Ψf (Y + δY )〉. (2.8)

From eq. (2.3) and eq. (2.8), it is straightforward to derive an evolution equation for the

scattering matrix Σ[S] which, thanks to the Lorentz invariance of eq. (2.4), can be converted

into an evolution equation for the target weight functional, WY :

δW [S]

δY
= χW [S], (2.9)

with the kernel of the evolution given by

χ = − 1

2π

∫

z
[ba

i (z, [ρ])ba
i (z, [ρ])+ ba

i (z, [Sρ])ba
i (z, [Sρ])− 2bb

i (z, [ρ])ba
i (z, [Sρ])Sba(z)]. (2.10)

Importantly, eq. (2.10) reduces to the JIMWLK kernel when the classical fields are

taken at leading order in the charge density of the projectile, gρ. Our goal is to derive

higher order corrections to the JIMWLK evolution by solving the classical equations of

motion at next order in gρ.

At this point it should be noted that the expressions in eq. (2.5) and eq. (2.8) for the

evolved wave function are not complete, and they are correct only in the limit of small

projectile density. The more general expression for the evolved wave function as given by

eq. (2.5) in [49] includes an extra Bogolyubov transformation with respect to the expression

in eqs. (2.5) and (2.8) in this paper. It is argued in [49] and assumed in this work that

such transformation reduces to the unity operator in the limit of small projectile density,

ρ → 0. Henceforth we restrict ourselves to the study of high density corrections to the

kernel of the evolution arising from the expansion of the classical gluon fields, bi, in terms

of the projectile charge density, gρ.

It is convenient to rewrite the kernel of the evolution in terms of left and right rotation

operators, whose action on the scattering matrix of a gluonic projectile is defined as:

Ja
L(x)Σ[S] = −tr

{

T aS(x)
δ

δS†(x)

}

Σ[S] , (2.11)

Ja
R(x)Σ[S] = −tr

{

S(x)T a δ

δS†(x)

}

Σ[S] . (2.12)
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In terms of these operators, the kernel of the evolution reads

χ = − 1

2π

∫

z
[ba

i (z, JL)ba
i (z, JL) + ba

i (z, JR)ba
i (z, JR) − 2bb

i (z, [JL])ba
i (z, [JR])Sba(z)]. (2.13)

3. General results

To determine the WW fields entering the kernel of the evolution, eq. (2.13), we need to

solve the classical Yang-Mills equations of motion in the light-cone gauge, A+ =0, with the

fast valence gluons playing the role of an external current. Since the hard gluons are fast

moving in the ‘+’ direction, the current can be written as Jν(z) = g δν+δ(z−)ρ(z), and the

equations read

DµFµν(z) = Jν(z) , (3.1)

DµJµ(z) = 0 , (3.2)

where eq. (3.2) ensures the covariant conservation of the current. Since the number of

gluons in the projectile is assumed to be small, ∼ O(1), the current that they generate is

of order g, J ∼ O(g). Thus, g will be the small parameter that controls our expansion of

the solution.

The general solution of these equations has been extensively discussed in [61, 62]. In

particular, it was shown in [1 – 3] that it is consistent to look for ‘static’ solutions of eq. (3.1)

— i.e, solutions independent of x+, with A− = 0. Such a solution is a pure gauge with

just transverse components. Under these assumptions eq. (3.2) is trivially satisfied and, by

writing the transverse components of the field as Ai(z
−, z) = θ(z−)bi(z), eq. (3.1) becomes

∂ib
a
i (z) + gfabc bb

i (z)bc
i (z) = gρa(z) , (3.3)

∂ib
a
j (z) − ∂jb

a
i (z) + gfabc bb

i (z)bc
j(z) = 0 , (3.4)

Expanding the solutions in powers of g:

ba
i (z) = g

(

ba
i1(z) + g2 ba

i2(z) + O(g4)
)

, (3.5)

we get

ba
i1(z) =

1

2π

∫

d2x
(z − x)i
(z − x)2

ρa(z) =
1

2π

∫

d2x (∂iX) ρa(z), (3.6)

ba
i2(z) = − 1

4(2π)2
fabc

∫

d2x d2y (X
↔

∂i Y )ρb(x)ρc(y), (3.7)

where we have made use of the following shorthand notation for the coordinate dependence

of the solution:

∂iX ≡ ∂z
i ln (|z − x|λ) ,

X
↔

∂i Y ≡ X (∂z
i Y ) − (∂z

i X) Y , (3.8)

where ∂z
i denotes the partial derivative with respect to the transverse components of z,

i = 1, 2.
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The expansion of the solution in eq. (3.5) immediately translates into an expansion for

the kernel of the evolution in powers of αs = g2/4π:

χ = αs

(

χ1) + αs χ2) + O(α2
s)

)

, (3.9)

whose leading term is the JIMWLK kernel:

αsχ
1) = χJIMWLK = − αs

2π2

∫

xyz
(∂iX)(∂iY ) [Ja

L(z)Ja
L(z)

+ Ja
R(z)Ja

R(z) − 2Ja
L(z)Jb

R(z)Sab(z)
]

. (3.10)

The first correction to JIMWLK, χ2), is obtained by keeping terms up to order α2
s in the

product WW fields, yielding

χ2) = − 1

(2π)2

∫

xywz
fabc (∂iY )(X

↔

∂i W )
[

Ja
L(x)Jb

L(y)Jc
L(w) + Ja

R(x)Jb
R(y)Jc

R(w)
]

−2facd(∂iX)(Y
↔

∂i W )Sba(z)
[

Jb
L(x)Jc

R(y)Jd
R(w) + Jb

L(x)Jc
L(y)Jd

R(w)
]

. (3.11)

Note that from the second order solution of the EOM we could immediately derive

part of the O(α3
s) corrections to the kernel. However, a complete derivation of the O(α3

s)

term in eq. (3.9) would require the O(g5) solution to the EOM, which is beyond the scope

of this paper.

4. Dipole model limit

The color structure of a generic projectile composed of gluons can be rather complicated,

consisting of different color multipoles mix with each other through the evolution in a

highly non-trivial way. However, in the large-N limit this complicated structure is greatly

simplified and the high energy evolution can be recast in terms of dipole degrees of freedom.

More precisely, the JIMWLK equation is equivalent to an infinite hierarchy of coupled

differential equations for the correlators of the gluon fields. In the large-N limit the whole

hierarchy decouples and one is left with a single, closed, non-linear evolution equation for

the dipole scattering amplitude — the BK equation [16 – 18, 37, 38].

In this section we explore the color structure of the correction to JIMWLK evolution

derived in the previous section. In order to do so, we consider an initial projectile entirely

describable by dipole degrees of freedom:

Σ = Σ[s], (4.1)

where

s(x, y) =
1

N
tr{S†

F (y)SF (x)} (4.2)

is the scattering matrix for a q-q̄ dipole, with x and y the transverse coordinates of, re-

spectively, the quark and the antiquark. The subscript F in the rhs of eq. (4.2) indicates

that the scattering matrix is to be taken for particles in the fundamental representation of
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SU(N), and will be usually omitted in the following. Our purpose is to study the resulting

color structure of the projectile under evolution, i.e. we want to calculate χ2) Σ[s]. The

action of the left and right rotation operators on a dipole-like projectile scattering matrix

is given by:

Ja
L(x) s[u, v] = −1

2
tr

{

taS(x)
δ

δST (x)
− S†(x)ta

δ

δS∗(x)

}

s[u, v] , (4.3)

Ja
R(x) s[u, v] = −1

2
tr

{

S(x)ta
δ

δST (x)
− taS†(x)

δ

δS∗(x)

}

s[u, v] , (4.4)

where ta are now the SU(N) generators in the fundamental representation. From eqs. (4.3)

and (4.4) it can be proved that both JL and JR are hermitian operators, a property which

immediately ensures the hermiticity of the kernel of the evolution.

4.1 General expressions

Using the following notation for the functional derivatives of the scattering matrix:

δuv;...;qtΣ ≡
[

δ

δs(u, v)
· · · δ

δs(q, t)

]

Σ[s], (4.5)

and defining Sz ≡ SF (z), we can write the action of the different pieces of the kernel in

eq. (3.11) on Σ[s] as

fabcJa
R(x)Jb

R(y)Jc
R(w)Σ[s] = − 1

N
fabc[δ(v−w)−δ(u−w)]

{

(4.6)

[δ(v−y)+δ(u−y)][δ(v−x)−δ(u−x)]tr{S†
uSvt

atbtc}δuvΣ

+
1

N
[δ(v−y)+δ(u−y)][δ(r−x)−δ(p−x)]tr{S†

uSvt
btc}tr{S†

pSrt
a}δpr;uvΣ

+
1

N
[δ(r−y)−δ(p−y)][δ(v−x)+δ(u−x)]tr{S†

uSvt
atc}tr{S†

pSrt
b}δpr;uvΣ

+
1

N
[δ(r−y)−δ(p−y)][δ(r−x)+δ(p−x)]tr{S†

uSvt
c}tr{S†

pSrt
atb}δpr;uvΣ

+
1

N2
[δ(r−y)−δ(p−y)][δ(t−x)−δ(q−x)]tr{S†

uSvt
c}tr{S†

pSrt
b}tr{S†

qStt
a}δqt;pr;uvΣ

}

,

fabcJa
L(x)Jb

L(y)Jc
L(w)Σ[s] = − 1

N
fabc[δ(v−w)−δ(u−w)]

{

(4.7)

[δ(v−y)+δ(u−y)][δ(v−x)−δ(u−x)]tr{S†
utctbtaSv}δuvΣ

+
1

N
[δ(v−y)+δ(u−y)][δ(r−x)−δ(p−x)]tr{S†

utctbSv}tr{S†
pt

aSr}δpr;uvΣ

+
1

N
[δ(r−y)−δ(p−y)][δ(v−x)+δ(u−x)]tr{S†

utctaSv}tr{S†
pt

bSr}δpr;uvΣ

+
1

N
[δ(r−y)−δ(p−y)][δ(r−x)+δ(p−x)]tr{S†

utcSv}tr{S†
pt

btaSr}δpr;uvΣ

+
1

N2
[δ(r−y)−δ(p−y)][δ(t−x)−δ(q−x)]tr{S†

utcSv}tr{S†
pt

bSr}tr{S†
qt

aSt}δqt;pr;uvΣ

}

,
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facdJb
L(x)Jc

R(y)Jd
R(w)Σ[s] = − 1

N
facd[δ(v−w)−δ(u−w)]

{

(4.8)

[δ(v−y)+δ(u−y)][δ(v−x)−δ(u−x)]tr{S†
utbSvt

ctd}δuvΣ

+
1

N
[δ(v−y)+δ(u−y)][δ(r−x)−δ(p−x)]tr{S†

uSvt
ctd}tr{S†

pt
bSr}δpr;uvΣ

+
1

N
[δ(r−y)−δ(p−y)][δ(v−x)−δ(u−x)]tr{S†

utb§vt
d}tr{S†

pSrt
c}δpr;uvΣ

+
1

N
[δ(r−y)−δ(p−y)][δ(r−x)−δ(p−x)]tr{S†

uSvt
d}tr{S†

pt
bSrt

c}δpr;uvΣ

+
1

N2
[δ(r−y)−δ(p−y)][δ(t−x)−δ(q−x)]tr{S†

uSvt
d}tr{S†

pSrt
c}tr{S†

qt
bSt}δqt;pr;uvΣ

}

,

and

f bcdJc
L(w)Jd

L(y)Ja
R(x)Σ[s] = − 1

N
f bdc[δ(v−x)−δ(u−x)]

{

(4.9)

[δ(v−w)−δ(u−w)][δ(v−y)+δ(u−y)]tr{S†
utdtcSvt

a}δuvΣ

+
1

N
[δ(v−w)−δ(u−w)][δ(r−y)−δ(p−y)]tr{S†

utdSvt
a}tr{S†

pt
cSr}δpr;uvΣ

+
1

N
[δ(r−w)−δ(p−w)][δ(v−y)−δ(u−y)]tr{S†

utcSvt
a}tr{S†

pt
dSr}δpr;uvΣ

+
1

N
[δ(r−w)−δ(p−w)][δ(r−y)+δ(p−y)]tr{S†

uSvt
a}tr{S†

pt
dtcSr}δpr;uvΣ

+
1

N2
[δ(r−w)−δ(p−w)][δ(t−y)−δ(q−y)]tr{S†

uSvt
a}tr{S†

pt
dSr}tr{S†

qt
cSt}δqt;pr;uvΣ

}

.

4.2 Diagrammatic interpretation

Despite the fact that the expressions derived in the previous section appear complicated,

they allow for a very clear physical interpretation in terms of diagrams according to the

following rules: the action of the left (right) rotation operator, Ja
L(R), on the projectile

scattering matrix brings in a new dipole, along with the the corresponding 1/N suppression

factor, which emits a new gluon of color a before (or after) the interaction with the target.

Such emission may happen either from the quark line or from the antiquark. In the former

case a, relative minus sign is picked up. Subsequent actions of the rotation operators may

act either on Σ[s], bringing new dipoles into the diagram, or on the pre-existing dipole,

which emits a new gluon. These rules are sketched in figure 1.

In order to fully describe the diagrams in terms of fundamental constituents, quark

and antiquark lines, we make use of the Fierz identity:

(ta)ij(t
a)kl =

1

2
(δilδjk − 1

N
δijδkl), (4.10)

which can be translated into diagrammatic language substituting the gluon lines by quark-

antiquark lines as indicated in figure 2.

The propagation of each quark (antiquark) line through the target at transverse co-

ordinate x is accounted for the scattering matrix, SF (x) (S†
F (x)). Finally, the trace over
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N
1

2

u
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p

r
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~

~
u

v

a

a b
v

u

ba

Figure 1: Diagrammatic representation of Ja

L
Σ (top) and Ja

L
Jb

R
Σ (bottom). The target is repre-

sented by the vertical thick line.

1
N

_1
2

=

Figure 2: Pictorial representation of the Fierz identity eq. (4.10).

closed fermion lines has to be taken. Following these rules, it is straightforward to rederive

the results in eqs. (4.6)-(4.9). As an example, we show in figure 3 the diagrams correspond-

ing to the action of JLJLJLΣ[s], eq. (4.7), and JLJLJRΣ[s], eq. (4.9), in which, for the

sake of simplicity, we have kept the gluon lines in the adjoint representation without using

the Fierz identity.

4.3 Symmetry considerations

Before proceeding further it is convenient to divide our final result into three pieces ac-

cording to their leading power of 1/N as given by the number of dipoles appearing in the

relevant diagram, see the previous subsection:

χ2)Σ[s] =
(

χ
2)
1/N + χ

2)
1/N2 + χ

2)
1/N3

)

Σ[s]. (4.11)

To complete the calculation we still have to plug in the results from eqs. (4.6)-(4.9). into

eq. (3.11), perform the contraction of the color indices and integrate over x, y,w. Further,

the cross terms LRR, eq. (4.8), and LLR, eq. (4.9), must be contracted with the scat-

tering matrix for a single gluon, Sab
A , which can be rewritten in terms of matrices in the

fundamental representation by means of the Fierz identity:

Sab
A (z) = 2 tr{S†

F (z)tbSF (z)ta}. (4.12)

The SU(N) algebra can be worked out using the relations listed in the appendix.

After all this is done, we note that the contribution to the kernel coming from the

pieces of order 1/N in eqs. (4.6) and (4.7) cancel each other out. An analogous cancellation
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b
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c
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a
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cv

u

p
r

t
q
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c

ad

v

p

r

u

v

u

d c

a

v

u

p
r

t
q

cd

v

u

a b

Figure 3: Diagrams corresponding to the LLL (plots on the left) and LLR (plots on the right), see

the accompanying text. The diagrams include one (∝ 1/N , top), two (∝ 1/N2, middle) and three

(∝ 1/N3, bottom) active dipoles. The thick vertical line represents the target.

happens between the leading 1/N contributions from eqs. (4.8) and (4.9). Therefore

χ
2)
1/NΣ[s] = 0. (4.13)

It is clear from the diagrammatic rules derived in 4.2 that this cancellation corresponds

to the diagrams in which all the emissions and absorptions of gluons happen in a single

dipole, while the other dipoles in the wave function remain as spectators. More precisely,
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the top diagrams in figure 3 cancel against their respective complex conjugate diagrams

(not shown in the figure).

An analogous cancellation occurs for the 1/N2 terms in eqs. (4.6) and (4.7). Dia-

grammatically, the middle-left diagram in figure 3 cancels against its complex conjugate.

Therefore, the leading 1/N2 contribution is given by the 1/N2 terms in eqs. (4.8) and (4.9)

(middle-right diagram in figure 3 plus its complex conjugate). We get

χ
2)
1/N2Σ[s] =

i

(2π)2
1

N2

{

∫

d2z

− N [∂i(R−P )][U
↔

∂i V ][tr{S†
uSvS

†
zSrS

†
pSz} −

1

N
tr{S†

uSv}tr{S†
pSr}]

− 1

2
[∂i(V −U)][(R−P )

↔

∂i (V −U)][tr{S†
zSvS

†
pSr}tr{S†

uSz} − tr{S†
uSzS

†
pSr}tr{S†

zSv}]

+
1

2
[∂i(R−P )][(R−P )

↔

∂i (V −U)][tr{S†
zSrS

†
uSv}tr{S†

pSz} − tr{S†
pSzS

†
uSv}tr{S†

zSr}]

− 1

2
[∂i(V −U)][(R−P )

↔

∂i (V −U)][tr{SzS
†
uSrS

†
p}tr{S†

zSv} − tr{S†
pSvS

†
zSr}tr{S†

uSz}]

+
1

2
[∂i(V −U)][(V −U)

↔

∂i (R−P )][tr{SzS
†
uSrS

†
p}tr{S†

zSv} − tr{S†
pSvS

†
zSr}tr{S†

uSz}]

+ N [∂i(V −U)][P
↔

∂i R][tr{S†
uSvS

†
zSrS

†
pSz} −

1

N
tr{S†

uSv}tr{S†
pSr}]

}

δ2Σ[s]

δs(p, r)δs(u, v)
.

(4.14)

This result can be further simplified by noting that any wave function or weight func-

tional of a gluonic/dipole configuration has to be completely symmetric under the exchange

of any number of gluons/dipoles, such that the exchange (u, v) ↔ (p, r) leaves the action

of the functional derivative δuv;prΣ unchanged. Under such an exchange, many terms in

eq. (4.14) cancel each other, yielding:

χ
2)
1/N2Σ[s] = − i

(2π)2
1

N2

∫

d2z
{

[∂i(R−P )(U
↔

∂i V ) − ∂(V −U)(P
↔

∂i R)][N tr{S†
uSvS

†
zSrS

†
pSz}]

+∂i(V −U)(R−P )
↔

∂i (V −U)
[

tr{S†
zSvS

†
pSr}tr{S†

uSz} − tr{S†
uSzS

†
pSr}tr{S†

zSv}

+tr{S†
pSzS

†
uSr}tr{S†

zSv} − tr{S†
pSvS

†
zSr}tr{S†

uSz}
] } δ2Σ[s]

δs(p, r)δs(u, v)
. (4.15)

Calculating the 1/N3 terms in an analogous way we get:

χ
2)
1/N3Σ[s] = − i

2

1

(2π)2
1

N3

∫

d2z

[

{∂i(R−P )}{(T −Q)
↔

∂i (V −U)}
]

×
[

tr{S†
uSvS

†
qStS

†
pSr} + tr{S†

uStS
†
qSrS

†
pSv} + tr{S†

zSrS
†
pSzS

†
uSvS

†
qSt}

+tr{S†
pSrS

†
zSvS

†
uStS

†
qSz}

] δ3Σ[s]

δs(q, t)δs(p, r)δs(u, v)
. (4.16)
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Eqs. (4.13), (4.15) and (4.16) are the central result of this paper. One of their main

features is the fact that the action of the kernel on a dipole-like projectile cannot be entirely

recast in terms of dipole degrees of freedom. On the contrary, the evolution generates a

complicated color structure consisting in the mixing of dipoles, quadrupoles, sextupoles

and octupoles as given by these equations, which can only be expressed partially as dipole

degrees of freedom by increasing the power in 1/N . Consequently, these corrections to the

leading JIMWLK kernel bring no corrections to the mean field BK equation.

5. Conclusions

In this work we have calculated the O(α2
s) corrections to the JIMWLK kernel that arise from

the O(g3) solutions to the classical Yang-Mills equations. These are the first corrections in

the charge density of the projectile to JIMWLK evolution, and therefore partially account

for the coherence effects in the projectile gluon emission which drives small-x evolution. In

the context of the present discussions on the quest for evolution equations for scattering of

a dense projectile which would contain the so-called pomeron loops, our result accounts for

the part of these corrections not arising from the non-commutativity of the target fields.

Thus, they are restricted to the dilute-dense scattering situation. The same systematic

technique could be used to improve the results, although admittedly the computation of

even higher orders looks technically challenging.

Our main result is the cancellation of the leading 1/N contributions, together with

eqs. (4.15)-(4.16). We provide a diagrammatic interpretation of these results. These cor-

rections are subleading in 1/N and exhibit a complicated color structure. They do not,

therefore, provide any correction to the BK equation but, rather, add new terms to the

Balitsky hierarchy.
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A. Some color algebra

In this appendix we list some relations needed to derive the results in section 4. Using the

basic SU(N) relations

fadef beff cfd =
N

2
fabc , (A.1)

dadedbeff cfd =

(

2

N
− N

2

)

fabc , (A.2)

dadef beff cfd = −N

2
dabc , (A.3)
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dadedbefdcfd =
N2 − 12

2N
dabc , (A.4)

tr{tatbtctd} =
1

4N
δabδcd +

1

8
gabegcde , (A.5)

where we have introduced the notation:

gabc ≡ 4 tr{tatbtc} = (dabc + ifabc); ḡabc ≡ (dabc − ifabc) . (A.6)

Since the generators of SU(N), ta, along with the unit matrix form a basis of the matrices in

the fundamental representation, we expand any arbitrary matrices, X,Y . . . in the following

way

X = x0 + xa
1t

a, Y = y0 + ya
1ta, . . . (A.7)

With the help of the relations listed above, we get

fabc tr{XY tatbtc} =
i

4
(N2 − 1)tr{XY }, (A.8)

fabc tr{XtaY tbtc} =
iN

4

(

tr{X}tr{Y } − 1

N
tr{XY }

)

, (A.9)

fabc tr{XtaY tb}tr{Ztc} =
i

4
[tr{XZ}tr{Y } − tr{Y Z}tr{X}] , (A.10)

fabc tr{XY tatb}tr{Ztc} =
iN

4

(

tr{XY Z} − 1

N
tr{XY }tr{Z}

)

, (A.11)

fabc tr{Xta}tr{Y tb}tr{Ztc} =
i

4
[tr{XZY } − tr{XY Z}] . (A.12)

These are the relations required to perform the contraction of the color indices in eqs. (4.6)-

(4.9).
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